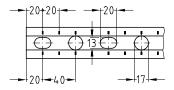
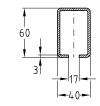
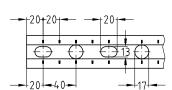

Edelstahl


Anwendung

- Ideal auch als Tragkonstruktion für Lüftungskanäle
- Vielfältige Montagemöglichkeiten für Vorwandinstallationen und Regale in Verbindung mit umfangreichen Systembauteilen

Ihre Vorteile


- Schnelle und rationelle Befestigung von Rohrsträngen und Rohrtrassen
- Skalierungsstriche seitlich und auf der Schlitzseite vereinfachen die Ausrichtung von Befestigungselementen bei der Installation und erleichtern das Maßnehmen und Zuschneiden der Profile vor Ort auf der Baustelle
- Für sichere seiten- und höhenverstellbare Befestigungen
- Hohe Biegesteifigkeit durch günstige Profilquerschnitte
- Zum Aufbau statisch richtig bemessener Konstruktionen mittels vielfältiger Verbindungsteile
- Passende Schalldämmelemente für alle Schienenprofile
- Sauberes optisches Bild durch die Verwendung von MPC-Abschlusskappen



Profil 38/40

Profil 40/60

Produktleistungen

Profil	Länge [mm]	Material V2A Artikel-Nr.	Material V4A Artikel-Nr.	Abgabeeinheit	Mengeneinheit
38/40/2,0	2.000	129914	129915	1	Stück
	4.000	129962	129963		
	6.000	130006	130007		
40/60/3,0		130017	130018		

Für den Einsatz in Bereichen mit Anforderungen an die Feuerwiderstandsdauer sind die im Brandprüfbericht aufgeführten Randbedingungen zu beachten.

Technische Daten

Technische Daten der Profile:

Produktle	istungen								
Profil	Material	Zul. Stahl-	Verfügbare	Profil-	Profilquer-	Trägheitsmoment		Widerstandsmoment	
Y		spannung Ozul. [N/mm²]	MPC- Schiebe- muttern	gewicht [kg/m]	schnitt [cm²]	ly [cm⁴]	lz [cm⁴]	Wy [cm³]	Wz [cm³]
27/18/1,25	V2A, V4A	149	M8, M10	0,6	0,69	0,2911	0,9554	0,31	0,707
28/30/1,75				1,15	1,36	1,3999	2,0551	0,911	1,467
38/40/2,0			M8, M10,	1,82	2,21	4,3286	6,1	2,164	3,21
40/60/3,0			M12	3,5	4,44	17,5426	13,3946	5,847	6,697

Tragfähigkeitswerte der Profile für Biegungen um die Y-Achse in [N]:

							-	-				
Profil			L[m]					L[m]		
	0,5	1,0	1,5	2,0	4,0	6,0	0,5	1,0	1,5	2,0	4,0	6,0
Y			—L/2—	F					↓F -L/3L	↓ F		
27/18/1,25	368	136	57	28	-	-	274	80	33	16	-	-
28/30/1,75	1.076	537	288	154			797	390	169	90		
38/40/2,0	2.553	1.280	847	497	85		1.886	958	532	292	50	
40/60/3,0	6.870	3.462	2.299	1.710	440	105	5.047	2.586	1.720	1.210	259	62
Y Y			↓ F ↓	F ↓F +L/4+				4	↓ F ↓ F	∳F ∳F /5→-L/5→		
27/18/1,25	183	57	24	12	-	-	152	45	19	-	-	-
28/30/1,75	532	277	121	65			441	220	95	51		
38/40/2,0	1.260	638	382	209	36		1.044	531	300	164	28	
40/60/3,0	3.371	1.722	1.147	854	185	44	2.788	1.433	956	682	146	35

Die ermittelten Lasten gelten für statisch ruhende Lasten. Berechnung auf Grundlage des Eurocode (EC3).

Der Sicherheitsbeiwert γ = 1,54 berücksichtigt die Sicherheits- und Kombinationsbeiwerte sowie den Sicherheitsbeiwert des Materials.

Bei den angegebenen Werten werden die zulässige Stahlspannung gemäß Tabelle sowie die maximale zulässige Durchbiegung L/200 unter Berücksichtigung des Eigengewichtes nicht überschritten.

Technische Daten

Zulässige Knicklasten für Profile in [N]:

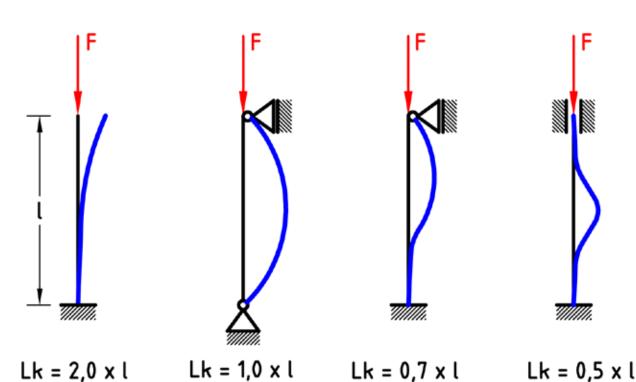
Knicklänge Lk [mm]	27/18/1,25	28/30/1,75	38/40/2,0	40/60/3,0
200	9.873	20.236	33.026	66.308
300	9.172	19.455	32.658	66.308
400	8.320	18.616	31.736	65.162
500	7.297	17.680	30.770	63.666
600	6.191	16.613	29.733	62.110
700	5.148	15.402	28.602	60.468
800	4.262	14.071	27.356	58.713
900	3.548	12.683	25.988	56.823
1.000	2.981	11.319	24.500	54.780
1.100	2.531	10.047	22.920	52.575
1.200	2.171	8.904	21.287	50.212
1.300	1.881	7.901	19.655	47.713
1.400	1.644	7.031	18.071	45.115
1.500	1.448	6.282	16.574	42.467
1.600	1.285	5.635	15.185	39.826
1.700	1.147	5.078	13.915	37.242
1.800	1.031	4.595	12.764	34.757
1.900	931	4.175	11.727	32.403
2.000	845	3.808	10.795	30.196
2.100	770	3.486	9.958	28.144
2.200	705	3.203	9.207	26.249
2.300	647	2.952	8.532	24.504
2.400	597	2.729	7.925	22.901
2.500	552	2.530	7.377	21.432
2.600	512	2.351	6.881	20.085
2.700	476	2.191	6.432	18.850
2.800	444	2.047	6.024	17.718
2.900	415	1.916	5.653	16.678
3.000	388	1.797	5.315	15.721
3.100	364	1.689	5.005	14.841
3.200	343	1.590	4.721	14.030
3.300	323	1.500	4.460	13.281
3.400	305	1.417	4.220	12.588
3.500	288	1.341	3.999	11.947
3.600	273	1.271	3.794	11.352
3.700	258	1.206	3.605	10.799
3.800	245	1.146	3.429	10.285
3.900	233	1.090	3.266	9.807
	222	1.038		
4.000			3.113	9.360
4.100	212	990	2.972	8.942
4.200	202	945	2.839	8.552
4.300	193	903	2.716	8.186
4.400	184	864	2.600	7.843
4.500	176	827	2.491	7.521
4.600	169	793	2.389	7.218
4.700	162	761	2.293	6.933
4.800	155	730	2.203	6.664
4.900	149	702	2.118	6.410
5.000	143	675	2.038	6.171
5.100	138	649	1.962	5.945
5.200	133	625	1.890	5.730
5.300	128	603	1.823	5.527
	123			
5.400		581	1.758	5.335
5.500	119	561	1.698	5.152
5.600	115	542	1.640	4.979
5.700	111	523	1.585	4.814
5.800	107	506	1.533	4.657
5.900	104	489	1.483	4.508
6.000	100	473	1.436	4.366

Technische Daten

Knicklasten nach DIN EN 1993-1-1 Abschnitte 6.2 und 6.3.

Die Tabellenwerte gelten für volltragende Querschnitte und zentrische Lasteinleitung!

Der mögliche geringere Schlankheitsgrad für Drillknicken und Biegedrillknicken ist gesondert zu untersuchen!


Betrachtet wird Knicken um die z-Achse und die y-Achse.

Die ungünstigste Knicklast ist tabelliert.

Der Sicherheitsbeiwert γ = 1,54 berücksichtigt die Sicherheits- und Kombinationsbeiwerte, sowie den Sicherheitsbeiwert des Materials.

In Abhängigkeit von den Lagerungsbedingungen und der Stablänge I entsprechend der Abbildung die maßgebende Knicklänge Lk ermitteln.

Mit Lk aus der Tabelle die Knicklast F ablesen.

